CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis
نویسندگان
چکیده
Microsatellites are multi-allelic and composed of short tandem repeats (STRs) with individual motifs composed of mononucleotides, dinucleotides or higher including hexamers. Next-generation sequencing approaches and other STR assays rely on a limited number of PCR amplicons, typically in the tens. Here, we demonstrate STR-Seq, a next-generation sequencing technology that analyses over 2,000 STRs in parallel, and provides the accurate genotyping of microsatellites. STR-Seq employs in vitro CRISPR-Cas9-targeted fragmentation to produce specific DNA molecules covering the complete microsatellite sequence. Amplification-free library preparation provides single molecule sequences without unique molecular barcodes. STR-selective primers enable massively parallel, targeted sequencing of large STR sets. Overall, STR-Seq has higher throughput, improved accuracy and provides a greater number of informative haplotypes compared with other microsatellite analysis approaches. With these new features, STR-Seq can identify a 0.1% minor genome fraction in a DNA mixture composed of different, unrelated samples.
منابع مشابه
Repurposing CRISPR/Cas9 for in situ functional assays.
RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISP...
متن کاملDeveloping oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9
Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...
متن کاملA Mouse Geneticist’s Practical Guide to CRISPR Applications
CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unp...
متن کاملTargeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells
CRISPR/Cas9 has demonstrated a high-efficiency in site-specific gene targeting. However, potential off-target effects of the Cas9 nuclease represent a major safety concern for any therapeutic application. Here, we knock out the Tafazzin gene by CRISPR/Cas9 in human-induced pluripotent stem cells with 54% efficiency. We combine whole-genome sequencing and deep-targeted sequencing to characterise...
متن کاملCRISPR/Cas9-Directed Genome Editing of Cultured Cells.
Human genome engineering has been transformed by the introduction of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system found in most bacteria and archaea. Type II CRISPR/Cas systems have been engineered to induce RNA-guided genome editing in human cells, where small RNAs function together with Cas9 nucleases for sequence-specific cleavage of t...
متن کامل